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A Concurrent Approach to String Transformation Synthesis

ANONYMOUS AUTHOR(S)

Program synthesis aims at the automatic generation of programs based on given specifications. Despite
significant progress, the inherent complexity of synthesis tasks and the interplay among intention, invention
and adaptation limit its scope. A promising yet challenging avenue is the integration of concurrency to enhance
synthesis algorithms. While some efforts have applied basic concurrency by parallelizing search spaces, more
intricate synthesis scenarios involving interdependent subproblems remain unexplored. In this paper, we focus
on string transformation as the target domain and introduce the first concurrent synthesis algorithm that
enables asynchronous coordination between deductive and enumerative processes, featuring an asynchronous
deducer for dynamic task decomposition, a versatile enumerator for resolving enumeration requests, and
an accumulative case splitter for if-then-else condition/branch search and assembling. Our implementation,
Synthphonia exhibits substantial performance improvements over state-of-the-art synthesizers, successfully
solving 116 challenging string transformation tasks for the first time.

1 Introduction
Program synthesis plays a significant role in computer science, guiding the development of methods
for automatically generating programs that fulfill given specifications. This field encompasses
various methodologies, with traditional deductive synthesis relying on logical rules [11, 29, 30, 35],
generic enumerative synthesis systematically exploring the space of candidate programs [1, 2, 5, 37],
emerging learning-based synthesis leveraging the power of neural networks [3, 8, 31], and hybrid
approaches merging these techniques [14, 15, 21, 26, 40].

Despite the progress, the scope of what can be synthesized remains constricted due to the inherent
algorithmic complexity of the program synthesis task and challenges raised between intention,
invention, and adaptation [16]. Amidst these hurdles, the incorporation of concurrency presents
a promising avenue. Although concurrency is a well-established principle in computing that
accelerates various computational tasks, its application to program synthesis has been limited—not
because researchers overlooked its potential, but because synthesis procedures are notoriously
difficult to parallelize. Some notable exceptions [14, 22, 23] divide a large search space into smaller
ones and solve them in parallel. This form of concurrency is elementary, as each subproblemmirrors
the others, adhering to identical specifications without necessitating inter-instance communication.
However, more complex synthesis scenarios, particularly those involving deductive top-down

decomposition, present more challenges. In these cases, a major challenge is that, due to the
nondeterministic inverse semantics of common operators, there is an explosion of decomposition
choices. For example, a string can be decomposed into substrings in quadratically many ways for
concatenation, and a set of input-output samples can be partitioned into conditional branches in
exponentially many ways. In these scenarios, simple parallelization would help little and a higher
degree of coordination and communication among concurrent components is needed.

The question we pose in this paper is whether concurrency can coordinate the decomposition of
subtasks and have them solved appropriately, mitigating the exponential blow-up. This inquiry
opens the door to several challenges that must be addressed. Firstly, the plethora of deductive rules
presents a maze, as it is unclear when rules should be applied and which rules should be prioritized
in the exploration process (also known as search tactics [33]). Secondly, the concurrent subproblems,
dynamically generated through deduction, each bear unique specifications and demand resolution
via enumeration. This necessitates a significant adaptation of traditional enumerative search
techniques to accommodate a dynamic, multi-task environment.
In response to these challenges, this paper introduces the first synthesis algorithm that orches-

trates deductive and enumerative synthesis processes concurrently. Our contributions include:
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• Asynchronous Deduction, a framework that empowers designers to not only delineate the
ways a synthesis task can be decomposed but also which subproblems should be solved
by enumeration (e.g., a prefix-suffix decomposition should be triggered only when an
enumerator finds a solution for the prefix). The deducer and the enumerator coordinate
through an asynchronous request-response mechanism.
• Accumulative Case-Splitting, a technique which decouples condition search and term search.
The two searches now can be done concurrently and the found terms and conditions are
sent to a single pool and later assembled to form the final solution.
• Versatile Enumeration, a technique that resolves multiple, dynamically generated synthesis
requests from external sources (e.g., a deducer). It performs enumeration and request
handling simultaneously by harnessing the power of domain-specific term dispatcher data
structures.
• An implementation of our algorithm, dubbed Synthphonia. Our experimental results

showcase that this concurrent approach outperforms leading-edge synthesizers significantly
and benefits from multithreading. Notably, Synthphonia solved 116 challenging string
transformation tasks for the first time.

While this paper primarily focuses on a specific area, namely string transformation, as shown
throughout the paper, the concurrent methodology we propose is new for synthesis and can be
adapted to benefit a wide variety of synthesis tasks in other domains in the future.
The remainder of the paper is structured as follows: §2 elucidates the concept of concurrent

synthesis and its inherent challenges through a concrete example. §3 delineates the formal frame-
work of our approach. §4 details the asynchronous deduction system. §5 describes our methods for
accumulative case-splitting and coordinated enumeration. §6 discusses some notable implementa-
tion details of Synthphonia. §7 reports our experimental design and the comprehensive results
obtained. §8 compares our method with existing literature, followed by conclusion and future work
discussion in §9.

2 Overview
In this section, we illustrate through a simple example the challenges faced by current synthesis
methodologies and how our concurrent approach addresses these problems.

Example 2.1 (Address Reordering). Consider a string transformation task that purports to reorder
the components of an address. It takes an address as input and produces a reordered address as
output. Table 1 shows some sample input addresses from different countries in various formats
and their corresponding outputs. Each input address typically includes street number/name, and
the names of the city, region, and country. Some addresses also contain a separate room number
and/or a postal code. The output rearranges the input to the following order: country, region, city,
street number/name, and room number (if any), all delimited by a slash “/” .

One intuitive way to perform the transformation is to distinguish addresses involving room
numbers (inputs in the table above the dash line) from others (inputs in the table below the dash
line). The former case has 5 components and the latter case has less than 5 components. For each
case, one can explicitly split the address into multiple components and re-assemble the components
in the desired order. Using common string transformation operators, a solution can be constructed
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Table 1. (Example 2.1) Sample input/output for reordering from different countries.

Input / String Output / String
“456 Oak Lane, Unit 102, London, England, UK” “UK/England/London/456 Oak Lane/Unit 102”

“101 Pine Avenue, Suite 5, New York, NY 10001, USA” “USA/NY/New York/101 Pine Avenue/Suite 5”
“202 Birch Road, Apt. 23, Vancouver, BC V6B 1L8, Canada” “Canada/BC/Vancouver/202 Birch Road/Apt. 23”

. . . . . . . . . . . .
“1234 Elm St., Springfield, CA, USA” “USA/CA/Springfield/1234 Elm St.”

“5678 Maple Avenue, Oakville, ON K0E 0B2, Canada” “Canada/ON/Oakville/5678 Maple Avenue”
“4321 Cedar Rd., Melbourne, VIC, Australia” “Australia/VIC/Melbourne/4321 Cedar Rd.”

. . . . . . . . . . . .

as below:

if in0.split(“,␣”).length == 5 then
in0 .split(“,␣”) [−1] ++ “/” ++ in0.split(“,␣”) [−2] .split(“␣”) [0] ++
“/” ++ in0.split(“,␣”) [−3] ++ “/” ++ in0.split(“,␣”) [0] ++ “/” ++ in0 .split(“,␣”) [1]

else in0.split(“,␣”) [−1] ++ “/” ++ in0.split(“,␣”) [−2] .split(“␣”) [0] ++
“/” ++ in0 .split(“,␣”) [−3] ++ “/” ++ in0.split(“,␣”) [0]

(2.1)

Though intuitive, the expression above is not the most compact one. For example, one can build a
more succinct but trickier solution:

in0.split(“,␣”) [−1] ++ “/” ++ in0.split(“,␣”) [−2] .split(“␣”) [0] ++
“/” ++ in0.split(“,␣”) [−3] ++ (“, /” ++ in0).split(“,␣”) [−5] ++
“/” ++ in0.split(“,␣”) [−4]

(2.2)

2.1 Challenges for Existing Approaches
Despite significant advancements in string transformation synthesis over the past decade follow-
ing the introduction of FlashFill [18], surprisingly, the straightforward example presented above
remains unsolvable by any existing synthesizer to our knowledge, including CVC4 [6], Duet [26],
FlashFill++ [9], and Probe [5]. This is due to several critical challenges, which we outline below.

Rich Grammar. Real-world synthesis tasks usually require rich grammars. String transforma-
tion, as an example, often requires many non-standard operations beyond the standard theory of
Strings [10], such as negative indices, loops, date and time conversions, numerical manipulations,
etc. Most of these features cannot be expressed in the standard SyGuS interchange format (SyGuS-
IF) which is adopted by solvers such as Duet [26] and Probe [5]. As a concrete example, Duet
lacks the capability of defining negative-index operations, which are necessary for both solutions
to Example 2.1.

Efficient Concurrency. Decomposing a synthesis task into subtasks and solving them indepen-
dently is a well-established approach in deductive synthesis. However, a significant challenge arises
from the nondeterministic inverse semantics of common operators, leading to a combinatorial
explosion of decomposition choices. For instance, a string can be decomposed into substrings in
quadratically many ways for concatenation, and a set of input-output examples can be partitioned
into conditional branches in exponentially many ways. These complexities are often attributed to
the inherent nature of the algorithm. However, the potential benefits of concurrency—specifically,
coordinating the decomposition of subtasks and solving them efficiently—are overlooked in existing
methods. For example, if a prefix-suffix decomposition is only triggered when an enumerator finds
a solution for the prefix, the need to consider quadratically many concatenation options can be
effectively eliminated.
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Balanced Scalability and Generality. Another fundamental challenge for program synthesis lies
in the tension between scalability and generality. Even a very simple synthesis task corresponds to
a gigantic search space, exceeding the capability of generic enumerative or deductive synthesis
engines. For example, as we will see soon in the next section, a typical string transformation
grammar consists of dozens of operators, and there are astronomically many expressions of similar
size to solutions (2.1) and (2.2). Therefore, generic enumerative methods like Probe [5], though
generally applicable, suffer the exponential space explosion and fail to solve Example 2.1. In contrast,
FlashFill++ [9] as a specialized synthesizer for string transformation, mitigates the problem by
employing a hard-coded, regular-expression-based grammar which supports all the non-standard
operations mentioned above. However, it enforces a stringent order in which the operations can be
applied, which excludes both solutions (2.1) and (2.2).

Customizable Deduction. Decomposing a synthesis task into subtasks by deduction has been a
widely accepted approach and has achieved success in numerous domains. Nonetheless, as noted
in the introduction, top-down decomposition calls for carefully designed search tactics that have
to be provided by domain experts. For example, a reasonable way to deduce Example 2.1 would
decompose the problem in a way that the output “USA/CA/Springfield/1234 Elm St.” is split into
two subproblems with outputs “USA” and “CA/Springfield/1234 Elm St.” , respectively, using a
delimiter “/” . However, there are thousands of different ways to split the output with different
delimiters—a generic deductive rule would simply state that “decompose the problem using a
delimiter, get a solution for each subproblem, then concatenate these solutions using the delimiter.”
How can the system prioritize the deduction mentioned above via a more specific rule which
specifies that the delimiter must be a simple constant and the first subproblem should be simply
solvable by enumeration? All of the existing approaches, including Duet [26] and FlashFill++ [9],
fail to embed such specific search tactics into their solvers. In particular, the deducing methods
in DryadSynth and Duet are restricted to witness functions of operators while FlashFill++
allows the DSL designer to create an extended form of witness functions called cuts. However, none
of these methods allow domain experts to design the prioritization of deduction needed in our
example.

Efficient Parallelization. As noted in the introduction, parallelization is widely recognized as a
means to speed up computational tasks. Unfortunately, although some synthesizers offer limited
parallelism support, they typically either run identical subproblems in parallel [14, 22, 23] or
lack specialization for synthesis problem-solving [4]. These approaches fail to yield significant
performance improvements for the synthesis problems examined in this paper.

2.2 Our Approach
Driven by the aforementioned challenges, in this paper, we present a concurrent approach designed
to fully harness the potential of both deductive and enumerative synthesis techniques. On the one
hand, to support rich grammars and customizable deduction, the deducer must support a flexible
deduction system which describes not only abundant ways of decomposing synthesis tasks but
also what guidance is needed to start a decomposition (e.g., a delimiter is needed for splitting). The
guidance per se can be viewed as a simple synthesis problem and solved by the enumerator. On
the other hand, to ensure efficient exploration of countless deduction paths, the communication
between the deducer and the enumerator must be concurrent—the deducer should try multiple
decompositions simultaneously, and the enumerator should be able to provide guidance for multiple
decompositions. Below let us see how the deducer and the enumerator in our approach collaborate
concurrently to solve Example 2.1 and produce Equation 2.2 as a solution. At the end of the section,
we present an overview of our synthesis framework, which involves another accumulative case
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Fig. 1. Enumeration and Deduction Process for Example 2.1.

splitter component for handling if-then-else operators, which are not present in the current
simple example.

2.2.1 Asynchronous Deducer. Basically, the deducer splits the synthesis task into subtasks, each
aiming at synthesizing a component of the expected output (e.g., country, region, etc.), and concate-
nates them to form a final solution. How does the deducer know which substrings of the expected
output are synthesizable components? It interacts with the enumerator. The detailed communication
between the deducer and enumerator used to solve Example 2.1 is shown in Figure 1a. In the figure,
box 𝑃1 represents the original synthesis problem and other boxes 𝑃2, 𝑃3, and 𝑃4 each represent
distinct subproblems. For simplicity, in each box, we just represent the problem using the expected
output for two sample inputs from Table 1, namely “456 Oak Lane, Unit 102, London, England,
UK” and “4321 Cedar Rd., Melbourne, VIC, Australia” . The horizontal arrows indicate the
message exchanges between the deducer and the enumerator.
At the beginning, based on the rich deductive rules which we will present in §4, the deducer

determines that the problem 𝑃1 can be split in two ways: either multiple pieces delimited by
a constant, or two pieces—a prefix and a suffix. Therefore, the deducer initiates two requests
simultaneously, namely ConstSubstr[𝑃1] and Prefix[𝑃1]. Intuitively, the former one simply asks
for a separator: “Please provide an expression that always evaluates to a substring of the expected
output.” The latter one asks for a synthesizable prefix: “Please provide an expression that always
evaluates to a prefix of the expected output.”

On the enumerator side, it maintains a pool of pending requests and solves them simultaneously,
as we will discuss shortly in §2.2.2. Whenever a solution for a request is found, the enumerator
responds with that expression to the deducer. In the concrete example shown in Figure 1a, the
enumerator first responds to request ConstSubstr[𝑃1] with a simple separator “/” . Based on this
received solution, 𝑃1 can be split into a list of strings like [“UK” , “England” , “London” , “456 Oak
Lane” , “Unit 102” ]. Thus the deducer creates a corresponding subproblem 𝑃2—once 𝑃2 is solved,
𝑃1 can be assembled by applying str.join to the solutions of 𝑃2 with “/” . Unfortunately, solving
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𝑃2 turns out to be a dead end. Among many attempts, the deducer sends a request Eq[𝑃2], asking
the enumerator to generate an expression to solve 𝑃2. However, it is not an easy task because 𝑃2
has reordered the segments from the original input, and the solution must assemble the segments
explicitly using multiple operations. So it takes nearly infinite time for the enumerator to respond
to 𝑃2’s request.

However, on a different path, the deducer receives the response for the other Prefix[𝑃1] request:
expression in0.split(“/”) [0] always evaluates to a prefix of 𝑃1. What remains is to synthesize
the corresponding suffix, which is denoted as task 𝑃3. Now, similar to the previous case of 𝑃1, to
solve 𝑃3, the deducer makes a prefix request Prefix[𝑃3]. The enumerator, this time, finds the same
solution “/” as the delimiter, which yields a new subtask 𝑃4. The concurrent synthesis process
continues so forth until the synthesis task is fully solved. Finally, solution (2.2) can be returned
using the joint force of deduction and enumeration.
For simplicity, a lot of possible deduction branches for Example 2.1 are omitted in Figure 1a;

however, in reality, the number of top-down deductive branches grows exponentially. To deduce
synthesis tasks at scale, we allow thousands of requests from the deducer to be handled at the
same time using a single enumerator. We call this technique asynchronous deduction because
numerous deducer requests are handled asynchronously, and deduction can actually be viewed as
an asynchronous program which only proceeds once its request gets responded.

2.2.2 Versatile Enumerator. The workhorse for the asynchronous deduction framework is a ver-
satile enumerator which solves a large number of synthesis tasks simultaneously. Recall that the
enumerator can remember numerous requests from the deducer and respond to them immediately
once an expression that satisfies the requests is discovered. The underlying mechanism of the
enumerator is depicted in Figure 1b. For each type of request from the deducer, the enumerator
maintains a specific data structure to store the relationship between the requests and enumerated
expressions.

Here, for “Prefix” requests, the enumerator employs a radix tree (a compact version of a prefix tree)
to store all requests from the deducer and all enumerated expressions. Each request or expression is
indexed by its output specification or its evaluation, respectively. When the enumerator receives a
“Prefix” request from the deducer, it first searches the radix tree and responds with all expressions
that already satisfy the constraint. If no expression satisfies the constraint, the enumerator will
insert the request into the radix tree. As shown in Figure 1b, request 𝑃4 is added to the radix
tree when 𝑃4 requests the enumerator. When the enumerator generates a new expression, it
adds the expression to the radix tree and checks if there are any requests that this expression
satisfies. It then immediately responds to all such requests with that expression. In Figure 1b, the
expression in0 .split(“,␣”) [−2] .split(“␣”) [0] is added to the radix tree, satisfying request 𝑃4. Then
the enumerator responds to 𝑃4, causing it to be further reduced into subproblem 𝑃5.

For other types of requests, various data structures are employed to ensure efficiency. We have
designed data structures for five different kinds of requests: Eq, ConstSubstr, Prefix, Len and
Contains. Because all such data structures are used to efficiently look up the corresponding requests
of a given expression, we generalize all these data structures into an abstract data type called
term dispatcher in our versatile enumerator. With term dispatcher, the enumerator can easily store
thousands of requests and respond to them with efficiency.

2.2.3 Overall Architecture. Now, we introduce the overall architecture of our synthesis framework
as shown in Figure 2. The framework first relaxes the original input-output example set into
different subsets based on a strategy defined by a problem relaxer, and then solves each relaxed
subproblem using a worker. The main novelty of our architecture, which we call accumulative

case-splitting (ACS), is that each worker will simultaneously and independently search: 1) a partial
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Fig. 2. Overview of Synthphonia.

solution, i.e., a solution for the subset of examples; and 2) one or more conditions that can split the
subset. The partial solutions and the conditions found by all workers will be stored in shared pools
and then combined into a single solution by a solution assembler. Note that our accumulative case-
splitting can be understood as a concurrent version of condition abduction. Traditional condition
abduction techniques [2, 25] also separate term search, condition search, and decision tree learning,
but interleave these tasks in a fixed order. This rigidity may result in too conservative case-splitting
(leading to poor performance) or too aggressive case-splitting (causing overfitting). In contrast,
accumulative case-splitting is more flexible and performs these tasks in a completely concurrent
and independent manner.
Each ACS worker comprises two components: an asynchronous deducer and a versatile enu-

merator, as we just introduced above. The deducer initializes the top-down deductive search by
recursively splitting the given specification into a range of subproblems and assigns them to dif-
ferent coroutines. The enumerator spawned by the deducer constantly enumerates expressions
and maintains a term dispatcher with enumerated expressions and pending requests, and a request
handler to process requests from the deducer. The subproblem coroutines are solved through
interacting with the versatile enumerator. The asynchronous deducer combines all the results from
the enumerator to generate a solution for the current worker.

3 Preliminaries
In this section, we provide a formal description of the synthesis problem addressed in this paper.

Definition 3.1 (Background Theory). A background theory is defined as a tuple T = (Σ, 𝜏, J·K),
where Σ denotes a finite set of symbols, 𝜏 : Σ → N represents an arity function, and J·K is the
semantics for the symbols. In particular, a symbol 𝑥 is considered a constant if 𝜏 (𝑥) = 0, or
considered an operator if 𝜏 (𝑥) > 0. J·K will associate each constant with a specific value, and each
operator with an operation on the values.

We use expression grammar to encompass the syntactical aspect of a synthesis problem.

Definition 3.2 (Expression Grammar). Consider a signature 𝜎 . An expression grammar G with
respect to 𝜎 can be described as a tuple (T ,N ,P), where T is the background theory,N represents
a set of non-terminals, and P comprises a set of production rules. Each production rule is either
𝑁 → 𝑓 (𝑁1, . . . , 𝑁𝜏 (𝑓 ) ), where 𝑁, 𝑁1, · · · ∈ N are non-terminals and 𝑓 ∈ Σ is a symbol in T , or
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𝑆 → 𝑆 ++𝑆
| 𝑆 [𝐼 ]
| str.replace(𝑆, 𝑆, 𝑆 )
| str.substr(𝑆, 𝐼 , 𝐼 )
| str.from_int(𝐼 )
| str.from_float(𝐹 )
| str.uppercase(𝑆 )
| str.lowercase(𝑆 )
| str.filter_char(𝑆,𝐶 )
| 𝐿[𝐼 ]
| list.join(𝐿, 𝑆 )
| month.fmt[Str] (𝐼 )
| weekday.fmt[Str] (𝐼 )
| time.fmt[Str] (𝑇 )
| ITE(𝐵, 𝑆, 𝑆 )
| . . . (Constants) . . .
| . . . (Variables) . . .

𝐼 → len(𝑆 )
| str.count(𝑆, 𝑆 )
| int.+(𝐼 , 𝐼 )
| int.-(𝐼 , 𝐼 )
| int.from_str(𝑆 )
| int.from_float(𝐹 )
| date.year(𝐷 )
| date.month(𝐷 )
| date.day(𝐷 )
| date.weekday(𝐷 )
| str.indexof(𝑆, 𝑆, 𝐼 )
| ITE(𝐵, 𝐼, 𝐼 )
| . . . (Constants) . . .

𝐿 → str.split(𝑆, 𝑆 )
| list.map[𝑆 → 𝑆 ] (𝐿)
| list.filter[𝑆 → 𝐵 ] (𝐿)

𝐶 → charset.Ll | charset.Lu
| charset.L | charset.N
| charset.LN

𝐵 → int.>(𝐼 , 𝐼 )
| int.=(𝐼 , 𝐼 )
| int.>=(𝐼 , 𝐼 )
| str.prefix(𝑆, 𝑆 )
| int.contains(𝑆, 𝑆 )
| int.suffix(𝑆, 𝑆 )

𝐹 → float.from_str(𝑆 )
| float.+(𝐹, 𝐹 )
| float.-(𝐹, 𝐹 )
| float.shl10(𝐹, 𝐼 )
| float.floor(𝐹, 𝐹 )
| float.ceil(𝐹, 𝐹 )
| float.round(𝐹, 𝐹 )
| . . . (Constants) . . .

𝐷 → date.parse(𝑆 )
𝑇 → time.parse(𝑆 )

| time.floor(𝑇,𝑇 )
| time.*(𝑇, 𝐼 )
| 1 | 60 | 3600

Fig. 3. A grammar for string manipulating programs. (The black part is the core grammar; the green part is

an extension used by Duet; the blue part is an extension for loops; the red part is an extension for date/time

semantics; brackets [·] are used to indicate arguments that cannot be easily enumerated.)

𝑁 → 𝑣 , in which 𝑣 is an input variable whose value changes based on the context. We denote the
set of all expressions generated by G as JGK, which is defined as JGK = {𝑒 | 𝑁 −→

P
∗ 𝑒, 𝑁 ∈ N}.

We also extend the semantics J·K to interpret the input variables. In this paper, we simply denote
each input variable as in0, in1, ... and assign values to the input variables using an input vector 𝑖𝑖𝑖 ,
which assigns input variables in0, in1, ... to the value 𝑖𝑖𝑖0, 𝑖𝑖𝑖1, ... The new semantics with input vector 𝑖𝑖𝑖
associated is denoted as J·K𝑖𝑖𝑖 .

Example 3.3. Synthphonia as a synthesizer specialized for string transformation, uses a gram-
mar for string expressions as shown in Figure 3. This grammar consists of eight non-terminals
𝑆, 𝐼 , 𝐿, 𝐵,𝐶, 𝐹, 𝐷,𝑇 , corresponding to eight types of expressions Str, Int, List, Bool, CharSet, Float,
Date and Time, respectively. The production rules for each non-terminal are shown in Figure 3.
Each non-terminal is associated with a type. Note that this is a very rich grammar which supports
not only standard string operations such as str.concat, str.split or str.replace, but also
special operations for date and time conversions, as well as numerical operations such as int.+,
float.from_str or float.ceil.

In this paper, we solve a class of synthesis problems which describes the syntactical aspect
using expression grammars and characterizes the expected behavior of the target expression using
examples. We call this class inductive SyGuS problems, as defined below.

Definition 3.4 (Inductive SyGuS Problem). An Inductive SyGuS Problem can be represented as
a tuple 𝑃 = (G,S), where G is an expression grammar, and S is the collection of input-output
examples represented as 𝑖𝑖𝑖 ↦→ 𝑜 , where 𝑖𝑖𝑖 is an input vector and 𝑜 is the anticipated output. A
solution to the SyGuS problem is an expression 𝑒 ∈ JGK that satisfies the following condition:∧

(𝑖𝑖𝑖 ↦→𝑜 ) ∈S
J𝑒K𝑖𝑖𝑖 = 𝑜
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In the paper, we use dom(S), or simply I, to denote set of all the input vectors of S, or domain
of S, formally dom(S) = {𝑖𝑖𝑖 | 𝑖𝑖𝑖 ↦→ 𝑜 ∈ S}. We also use S|𝐼 to denote the subset of S which domain
is the input vector set 𝐼 , i.e. S|𝐼 = {𝑖𝑖𝑖 ↦→ 𝑜 ∈ S | 𝑖𝑖𝑖 ∈ 𝐼 }.

4 Asynchronous Deduction
In this section, we elaborate on the asynchronous deducer part of our approach. We first introduce
a deduction system in which traditional deductive rules are enriched to indicate when and what
requests to make to the enumerator. Then we introduce the adaptation needed for conditions, and
present the concurrent algorithm that runs the deducer.

4.1 Requests
A salient feature of our deduction system is its asynchronous communication with an enumerator
via requests and responses. Intuitively, a request denotes a question posed by a deducer to an
enumerator at a specific time, asking for a solution to a subproblem.
Definition 4.1 (Request). An enumerator request is of the form Request(G,S, 𝑅), where (G,S)

forms the original inductive SyGuS problem to be solved by the deducer, and 𝑅 is a subproblem
functor that converts the original, inductive specification S to the specification for a subproblem
denoted as 𝑅(S) (see some examples below). A solution (or response) to a request is an expression
𝑒 ∈ JGK that satisfies 𝑅(S).

Example 4.2 (Subproblem Functors for Strings). In this paper, specialized for the expressive string
grammar displayed in Figure 3, we consider five subproblem functors: Eq, ConstSubStr, Prefix, Len
and Contains. Each subproblem functor can be characterized as a logical formula regarding the
target expression 𝑒 and the original inductive specification S:

Eq(S) ≔
∧

(𝑖𝑖𝑖 ↦→𝑜 ) ∈S
J𝑒K𝑖𝑖𝑖 = 𝑜 Prefix(S) ≔

∧
(𝑖𝑖𝑖 ↦→𝑜 ) ∈S

J𝑒K𝑖𝑖𝑖 prefixof 𝑜

ConstSubstr(S) ≔ ∃𝑐.
∧

(𝑖𝑖𝑖 ↦→𝑜 ) ∈S
J𝑒K𝑖𝑖𝑖 = 𝑐 ∧ 𝑐 substrof 𝑜 Contains(S) ≔

∧
(𝑖𝑖𝑖 ↦→𝑜 ) ∈S

J𝑒K𝑖𝑖𝑖.contains(𝑜)

Len(S) ≔
∧

(𝑖𝑖𝑖 ↦→𝑜 ) ∈S
len(J𝑒K𝑖𝑖𝑖 ) = 𝑜

In this paper, we simply use 𝑅 [G,S] or 𝑅 [𝑃] (where 𝑃 = (G,S) is an inductive SyGuS problem)
to denote Request(G,S, 𝑅). For a request 𝑟 , we use 𝑟 .𝑅, 𝑟 .G and 𝑟 .S to denote the components 𝑅,
G, S associated with 𝑟 , respectively. We also abuse the notation and use 𝑅 [G,S] to represent the
formal specification of the subproblem represented by 𝑅 [G,S]. Moreover, we use 𝑒 |=𝐸 𝑅 [G,S] to
indicate that an expression 𝑒 is found by an enumerator as the response to request 𝑅 [G,S].

4.2 Asynchronous Deduction Rules
Based on our notion of requests, we can now define the general form of deduction rules used in
our synthesis framework, and present the deduction rules used in string transformation synthesis.
Definition 4.3 (Asynchronous Deduction Rule). An asynchronous deduction rule is an inference

rule in the following form:(
𝑒 |=𝐸 𝑅 [G, 𝑓 (S)]

)
⋊
(
𝑞(S, 𝑒), 𝑒1 |= 𝑝𝑝𝑝1 (S, 𝑒), . . . , 𝑒𝑛 |= 𝑝𝑝𝑝𝑛 (S, 𝑒)

)
𝛾 (𝑒, 𝑒1, . . . , 𝑒𝑛) |= S

𝑐 (S)

where the condition part of the rule is represented by 𝑐 (S), which is a condition specifying under
which condition this rule can be applied. This is primarily used to test if the output example
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Eq
𝑒 |=𝐸 Eq[G, S]

𝑒 |= S

S-Prefix(
𝑒 |=𝐸 Prefix[G, S]

)
⋊
(
𝑒1 |= str.substr(S, str.len(J𝑒KI ), −1)

)
𝑒 ++𝑒1 |= S

S-ConstSubstr(
𝑒 |=𝐸 ConstSubstr[G, S]

)
⋊
(
𝑒1 |= S.split_once(J𝑒KI ) [0], 𝑒2 |= S.split_once(J𝑒KI ) [1]

)
𝑒1 ++𝑒 ++𝑒2 |= S

L-Map(
𝑒 |=𝐸 Len[G, len(S) ]

)
⋊
(
𝑒𝑓 |=

{
J𝑒K𝑖𝑖𝑖 [𝑘 ] ↦→ 𝑜 [𝑘 ]

��𝑖𝑖𝑖 ↦→ 𝑜 ∈ S, 0 ≤ 𝑘 < len(𝑆 [𝑖𝑖𝑖 ] )
})

list.map[𝑒𝑓 ] (𝑒 ) |= S

L-Filter (
𝑒 |=𝐸 Contains[G, S[0] ]

)
⋊( ∧

𝑖𝑖𝑖 ↦→𝑜∈S
𝑜.subseqof(J𝑒K𝑖𝑖𝑖 ), 𝑒𝑓 |=

{
J𝑒K𝑖𝑖𝑖 [𝑘 ] ↦→ 𝑜.contains(J𝑒K𝑖𝑖𝑖 [𝑘 ] )

��𝑖𝑖𝑖 ↦→ 𝑜 ∈ S, 0 ≤ 𝑘 < len(J𝑒K𝑖𝑖𝑖 )
} )

list.filter[𝑒𝑓 ] (𝑒 ) |= S

Fig. 4. Selected Asynchronous Deduction Rules for String. See Appendix A for full list.

S matches the type of the rule and the solution generated by this rule can be expressed in the
grammar.
The premise part is split by a special ⋊ connective into two parts. The first part represents an

asynchronous request to an external enumerator where 𝑅 [G, 𝑓 (S)] is a request and 𝑒 is a response
to the request as defined earlier, where 𝑓 is a function adapting the original S for the subproblem
(can be simply the identity function). The response to the request (i.e., the solution 𝑒) serves as a
guard which enables a deduction following the second part of the premise. In the second part of the
premise, 𝑞(S, 𝑒) is some additional conditions for this deduction rule restricting 𝑒 (typically ignored
for most rules); and 𝑝𝑝𝑝1, . . . , 𝑝𝑝𝑝𝑛 are subproblem functors. Each functor 𝑝𝑝𝑝𝑖 takes the specification S
and an expression 𝑒 from the enumerator and produces a new input-output example set 𝑆𝑖 for the
𝑖-th subproblem.

The conclusion part states combining 𝑒, 𝑒1, . . . , 𝑒𝑛 can generate a solution of S, where 𝛾 is a
combinator specified by the rule which is used to generate such a solution.

As such, we can use a tuple (𝑐, 𝑅, 𝑓 , 𝑞,𝑝𝑝𝑝,𝛾) to represent an asynchronous deduction rule, where
𝑝𝑝𝑝 is the vector of all subproblem functors 𝑝𝑝𝑝1, . . . , 𝑝𝑝𝑝𝑛 .

Figure 4 shows all asynchronous deduction rule designs for synthesizing string transformations
using the grammar from Example 3.3. For simplicity, we omit all signature and grammar in the
inductive SyGuS problem and all conditions 𝑐 (S) for all rules. We use prefix S- and L- to denote
the type of the input-output examples the rule is applied to. All rules with prefix “S-” must be
applied to input-output examples S of Str type, whereas all rules with prefix “L-” must be applied
to specifications of List type.
For simplicity, we also allow operators to be applied into specification, e.g. len(S) = {𝑖𝑖𝑖 =

len(𝑜) | 𝑖𝑖𝑖 ↦→ 𝑜 ∈ S} is an example-based specification that maps every inputs vector 𝑖𝑖𝑖 into the
length of output len(𝑜). We also use I to denote the set of all input vectors in S.

Example 4.4 (Rule S-Prefix). Consider rule S-Prefix in Figure 4. The rule follows the template
from Definition 4.3 and can be represented by tuple (𝑐, 𝑅, 𝑓 , 𝑞,𝑝𝑝𝑝,𝛾). For example, S-Prefix can be
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written as (𝑐, Prefix, 𝑓 , true, 𝑝𝑝𝑝, ++), where 𝑐 (S) is trivial and omitted in Figure 4; it just checks that
all of S’s outputs have string type; 𝑓 (S) = S simply keeps the original specification S unchanged;
and𝑝𝑝𝑝 just contains a single subproblem functor which generates a new set of input-output examples
𝑆 = str.substr(S, str.len(J𝑒KI),−1) as specification for the subproblem. Intuitively, the rule
can be applied if operator ++ is available in G. Upon application, the rule first makes a request to
the enumerator asking for an expression that evaluates to a prefix of the expected output. When
an expression 𝑒 is returned from the enumerator, the rule will deduce the original problem to a
single subproblem: synthesizing an expression whose outputs can be concatenated to the output of
𝑒 to form the expected output. Once the subproblem is solved and a solution 𝑒1 is obtained, the
concatenation 𝑒 ++ 𝑒1 forms a solution for (G,S).

Remark: Our asynchronous deduction rules are different from those used in state-of-the-art
deductive systems (e.g., FlashFill++ [9]) in several aspects. On the one hand, our rules are more
generalizable, without the need for special customizations like a layer grammar or cuts for restricting
the witness function. On the other hand, our rules expect more guidance from the user on how
to coordinate between deduction and enumeration for the best performance. For example, rule
S-ConstSubstr gives a hint on what the enumerator should solve and how the response determines
where the original problem should be split. Other rules for list-related deductions like L-Map and
L-Filter also indicate how and in what order these operations’ parameters should be synthesized.

4.3 Adaptation for Conditions
Readers may have noticed that Figure 4 misses a key rule for the ITE operator. It is quite natural
to extend Figure 4 with a similar S-Ite to let the deducer find a condition that splits the example
set S into two distinct sets, and solves the two subproblems separately. However, as S can be
split arbitrarily, the rule could easily produce exponentially many subproblems to the size of S.
How to harness the decomposition and search efficiently? This has been a known open problem
for deductive synthesis [33]. Another straightforward alternative is to solve each input-output
example independently and then to combine the results using the ITE operator. However, this
naïve approach tends to produce large, overfit solutions rather than the optimal solution for the
problem. Other methods [2, 25] based on condition abduction have also been proposed. However,
as discussed in Section 2.2.3, these methods fail to offer enough flexibility for string transformation
synthesis due to their fixed-ordered condition abduction process.
To address this challenge, we introduce the concept of accumulative case-splitting. The insight

is that condition search should be decoupled from other term search and be agnostic to how the
synthesis problem will be decomposed and whether it can be solved. In other words, conditions
and terms should be searched independently and then assembled into a solution (see more details
in Section 5.1).
In this setting, as we will show shortly in §5, there will be multiple concurrent asynchronous

deducers, each working for a distinct spec S. The deducers all contribute to a global pool of
conditions and partial solutions for later solution assembling. To this end, we introduce a new
subproblem functor (and the corresponding request) called Cond(S) with the aim of splitting S:

Cond(S) ≔
( ∨
(𝑖𝑖𝑖 ↦→𝑜 ) ∈S

J𝑒K𝑖𝑖𝑖 = true
)
∧
( ∨
(𝑖𝑖𝑖 ↦→𝑜 ) ∈S

J𝑒K𝑖𝑖𝑖 = false
)

(4.1)

Different from other functors/requests presented in Example 4.2, Cond(S) is not associated
will any rule and sent to the enumerator upfront before any deduction. We next illustrate the
asynchronous deduction algorithm with accumulative case-splitting.
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4.4 The Algorithm
Given a set of rules following the template described above, we now demonstrate how the asyn-
chronous deducer collaborates with an enumerator, as outlined in Algorithm 1. The algorithm
takes an inductive SyGuS problem (G,S) as input and returns both a solution to the problem and a
sequence of conditions discovered during the search. These conditions are used in our accumulative
case-splitting framework to combine solutions effectively. For clarity, we model this process using
Rust-style asynchronous programming primitives such as async-await and generators: a generator
continuously yields a stream of conditions and finally returns a solution to the input problem.

The Solve procedure, as the entry of the algorithm, creates the corresponding enumerator Enum
for the current deducer, which will be used to solve subproblem requests concurrently in a separate
coroutine. Then, Solve first sends a Cond[G,S] request to Enum, expecting to receive a stream
condstrm of condition expressions that splits the requested input-output examples. Solve will also
start deducing the input SyGuS problem by invoking the Deduce subprocedure, which returns a
future solf of the problem solution. As an ACS worker, Solve will contribute a stream of conditions
cond as received from Enum along the process, until a solution sol is generated by the Deduce
subprocedure (line 5-8).
The Deduce subprocedure starts by creating a memory location resultc to store the results

generated by coroutines created by Deduce. We use the term one-shot channel to denote that this
location used for inter-coroutine communication can be updated only once. Deduce runs a loop
until resultc is set to an expression that will be returned as the solution. The loop considers each
rule in the rule set ℜ, which comprises premise 𝔭, conclusion 𝔮, and condition 𝔠. Note that we
use blue color to denote components from the deduction rule and use Fraktur letters to denote
variables representing these components. Then the condition 𝔠 for the rule is interpreted under
the current grammar G and specification S. If the condition is evaluated to be true, a coroutine
ApplyRule will be created to interpret the rule.

The ApplyRule subprocedure tries to recursively solve all subproblems from the premise 𝔭 and
combine the solutions to form a solution for the conclusion 𝔮. There are three possible cases of 𝔭:

• If 𝔭 involves a request of the form 𝑒 |=𝐸 𝑅 [G,S′], the algorithm generates the request
𝑅 [G,S′], sends it to the corresponding enumerator Enum, which provides a stream of
solutions of this request as response. Whenever a solution is received, the subprocedure
applies the solution to the rest of the premise 𝔭′, and continues with ApplyRule in another
coroutine (lines 17–20).
• If 𝔭 requires a standard subproblem S′′ to be solved by deduction, the subprocedure checks
if S′′ has the same input vector as the target specification S. If so, the subproblem can be
solved by recursively calling Deduce with the same enumerator Enum. Otherwise, a new
thread must be spawned running the Solve subprocedure. As we restrict every deducer to
work in the same threads as the enumerator, Solve must be run on a new thread. Once a
solution sol to the subproblem is found, it continues by recursively calling ApplyRule for
the rest of the premise 𝔭′ (lines 21–26).
• Finally, if 𝔭 is empty, that means all subproblems have been solved and applied to the
conclusion 𝔮. The subprocedure can simply take the combined expression 𝔢 and set into
resultc (lines 27–29).

For a single Deduce procedure, there are potentially tens or hundreds of concurrent ApplyRule
invocations. Once a single instance ofApplyRule sets resultc into some value,Deduce immediately
returns, and all running coroutines and pending requests associated with it will be immediately
deallocated.
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Algorithm 1: Asynchronous Deduction (as an ACS Worker)
Parameters :A set of asynchronous deduction rules ℜ, an expression grammar G.
Input :A collection of input-output examples S.
Yields :A sequence of conditions cond discovered during the enumeration, which splits the

input-output examples set S
Output :A solution sol to the inductive SyGuS problem (G,S).

1 async gen Solve(G,S) :
2 Enum← new Enumerator(G,S) // Create an enumerator coroutine (cf. Algo 3)

3 condstrm ← Enum .ReqestStream
(
Cond[G,S]

)
// Enumeration request (cf. Algo 3).

4 solf ← Deduce
(
Enum,S

)
5 loop:
6 match await ('cond', condstrm) ∨ ('sol', solf) :
7 case 'cond', cond : yield cond // new condition found

8 case 'sol', sol : return sol // solution found and return

9 async fn Deduce
(
Enum,S

)
:

10 resultc ← channel.oneshot() // Create a oneshot channel to await the result

11 for 𝔭
𝔮 𝔠 ∈ ℜ :

12 if J𝔠{S ↦→ S}K : // Apply rule when condition satisfied

13 ApplyRule
(
Enum,𝔭{S ↦→ S},𝔮{S ↦→ S}, resultc

)
14 return await resultc

15 async fn ApplyRule
(
Enum,𝔭,𝔮, resultc

)
:

16 match 𝔭 :
17 case

(
𝑒 |=𝐸 𝑅 [G,S′]

)
⋊ 𝔭′ :

18 reqstrm ← Enum .ReqestStream(𝑅 [G,S′]) // Send request 𝑟 to enumerator

19 for await 𝑒 ∈ reqsstrm :
20 ApplyRule

(
Enum,𝔭′{𝑒 ↦→ 𝑒},𝔮{𝑒 ↦→ 𝑒}, resultc

)
21 case 𝑒 |= S′′, 𝔭′ :
22 if dom(S′′) = dom(S) :
23 sol← await Deduce

(
Enum,S′′

)
24 else:
25 sol← await spawn Solve(S′′) .ret // Run SOLVE parallelly, await return value

26 ApplyRule
(
Enum,𝔭′{𝑒 ↦→ sol},𝔮{𝑒 ↦→ sol}, resultc

)
27 case 𝜀 :
28 (𝔢 |= S) ← 𝔮

29 resultc .send(𝔢)

5 Enumeration and Case-splitting
In this section, we discuss other enumeration-related components of our concurrent synthesis
framework, including the main algorithm which systematically enumerates the relaxed subsets
of the original input-output example, the term dispatcher which coordinates the communication
between deducer and enumerator, and the underlying enumerator for request handling.
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5.1 Accumulative Case-Splitting
We now present the overall synthesis algorithm. In the setting of accumulative case-splitting, the
goal of an asynchronous deducer is not to find a full solution satisfying all examples, but conditions
and/or partial solutions that can be later assembled to form a decision tree using the ITE operator.
Therefore, our main synthesis algorithm essentially utilizes multiple worker threads, each solving
a different relaxation of the original problem, collects produced conditions and partial solutions,
and assembles them to a full solution.

Which relaxations should be enumerated and solved by ACSworkers? To strike a balance between
failing to find any solution and generating overfit solutions, Our algorithm adopts a size-based
enumeration. It begins with the weakest, single-example subproblems, ensuring that an initial,
possibly-overfit solution is available. Gradually, it solves stronger, multi-example subproblems,
which progressively refine the found solutions and mitigate overfitting. Hence, the likelihood of
overfitting can be significantly reduced while maintaining the capability to solve difficult problems.

Algorithm 2 shows our overall synthesis algorithm with Synth as the entrance. The algorithm
maintains two global sets of expressions: conds, which collects all conditions discovered by the
enumerators, and sols, which keeps all partial solutions found by worker threads, i.e., expressions
that cover at least a subset of the input-output examples. To generate conditions and partial solutions
into conds and sols, the procedure first spawns a set of worker threads. Each worker thread will
repeatedly select a subset of S using GenerateExamples which represents a relaxed, weaker
problem, and solve the relaxed problem using Solve as shown in Algorithm 1. GenerateExamples
will pick a subset based on a certain strategy, the details of which we leave in Appendix B.1.

The Synth procedure combines terms from conds and sols to generate the final solution. Once a
condition (or, at the end, a partial solution) is available from Solve, it will be immediately added to
conds (or sols). After that, the Synth procedure will try to learn a new decision tree 𝑒 (shown as
the LearnDT call) using sol and conds, and return 𝑒 if its size is less than a preset size limit 𝜃tree-size.
The conditions of the decision tree are collected from all the enumerators of the algorithm.

LearnDT learns a decision tree from sols and conds. The decision tree learning algorithm is based
on ID3 [36], but since ID3 does not allow labels to overlap between data points, we slightly updated
the information gain defined by ID3 to support the overlap with solutions (that is, an example
can be solved by multiple solutions). Specifically, when an example can be solved with multiple
solutions, the standard entropy defined by the ID3 algorithm is no longer valid. To address this, each
time we compute the entropy, we simply assign each example with multiple solutions to the single
solution that covers the most examples. This heuristic technique gives a nearly-minimum entropy
of all possible assignments of examples, ensuring the information gain to be nearly-maximal.

5.2 Term Dispatcher
We now elaborate an abstract data type called term dispatcher which enables the enumerator to
handle a large number of requests simultaneously. Then we present the enumeration algorithm in
which a request handler interacts with a term dispatcher. In a nutshell, the term dispatcher D is an
abstract data type that maintains multiple requests and expressions satisfying these requests. We
present the definition of term dispatcher as follows:

Definition 5.1. A term dispatcher D is a structure with the following operations:

• D .add-expr(𝑒): Add an expression 𝑒 to the data structure.
• D .add-req(𝑟 ): Add a request 𝑟 to the data structure.
• D .dispatch(𝑒): Get a set of requests in D to which 𝑒 can be a response.
• D .select(𝑟 ): Get a set of expressions in D that satisfy 𝑟 .
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Algorithm 2: Overall Synthesis Algorithm (Accumulative Case-Splitting)
Parameters :nthd, number of worker threads used for the search; and 𝜃tree-size, size limit of the

decision tree.
Input :An inductive SyGuS problem (G,S).
Output :A solution to (G,S).

1 fn Synth(G,S) :
2 conds, sols← ∅ // The global sets of conditions and (partial) solutions

3 for 𝑖 ∈ [0, nthd) :
4 spawn: // Create worker threads

5 loop:
6 𝑅 ← GenerateExamples(S, sols) // Pick a subset of S (cf. Algo 4 in appx.)

7 for await cond ∈ Solve(G,S |𝑅) : // Solve the relaxed subproblem (cf. Algo 1)

8 conds← conds ∪ {cond}
9 finally sol : // The return value of SOLVE (cf. Algo 1 line 8).

10 sols← sols ∪ {sol}

11 loop:
12 wait for sols and conds to be updated
13 𝑒 ← LearnDT(sols, conds) // Learn a decision tree

14 if 𝑒 ≠ ⊥ and 𝑒.decision-tree-size() ≤ 𝜃tree-size :
15 return 𝑒

Recall that every request 𝑟 has a type determined by its subproblem functor 𝑟 .𝑅. For efficiency,
for each request type, the term dispatcher should be implemented differently. For Eq, we simply
borrow the hash table for checking observational equivalence by allowing it to store requests at the
place of the expression if the expression is not available. The operation cost is almost negligible. For
ConstSubstr used in S-Join and S-ConstSubstr, we maintain a single interval tree, which is simple
and enough for efficient implementation of D .dispatch(𝑒) and D .select(𝑟 ) when there are not too
many expressions that are both constant and a substring of S. For Prefix used in rule S-Prefix,
we maintain a radix tree for each input-output example. Note that expressions that evaluate to
shorter strings satisfy more requests. In particular, any expression producing empty output for
some inputs can trivially satisfy all Prefix requests and can be returned for D .dispatch(𝑒). To avoid
this problem, we only traverse the radix tree for which the expression yields the longest output. For
Len, we maintain a hash table that uses the length vector as index. For Contains, as the D .select(𝑟 )
operation is rarely called in practice, we simply keep a hash table that maps a string element to a list
of requests. And lastly, for Cond, we maintain a single list 𝐸.𝐶 to store all conditions discovered by
a single enumerator, since the constraint Cond(S) defined in 4.1 doesn’t reply on the output of S.
We leave more details of the design of each data structures in Table 3 of Appendix B.2, including the
data structure we use for implementing every request type, and how D .dispatch(𝑒) and D .select(𝑟 )
are implemented in each case.

5.3 Enumeration for Request Handling
Algorithm 3 illustrates how the term enumerator operates in response to requests from the deducer.
As previously discussed, the enumerator consists of three key components: a term dispatcher, a
term generator, and a request handler. To capture their concurrent interaction, we model these
components together inside one single actor [17, 19, 20] in Algorithm 3.
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Algorithm 3: Enumeration for Request Handling
Input :An inductive SyGuS problem (G,S)

1 actor Enumerator(G,S) :
2 D ← new TermDispatcher(S) // Initialize a new Term Dispatcher

3 async gen ReqestStream(𝑟 ) : // Generate a stream of response for request 𝑟

4 for 𝑒 ∈ D .select(𝑟 ) : yield 𝑒 // Reply all possible 𝑟 with expression 𝑒

5 𝑟 .chan← channel() // Create a channel for FIFO communication

6 D .add-req(𝑟 )
7 for await 𝑒 ∈ 𝑟 .chan : yield 𝑒 // Reply all possible 𝑟 with expression 𝑒

8 async init:
9 loop:
10 𝑒 ← NextTerm(G,S) // Enumerate the next expression

11 for 𝑟 ∈ D .dispatch(𝑒) :
12 await 𝑟 .chan.send(𝑒) // Reply all possible 𝑟 with expression 𝑒

13 D .add-expr(𝑒)

The enumerator actor created in Algorithm 1 maintains a term dispatcher D (line 2) to store
the relationship between term generation and requests. The enumerator can be requested by the
deducer calling ReqestStream (line 3-7) to generate a stream of expressions that satisfy the
request. It will continually run term generation (line 8-13) once created to answer the requests
made by ReqestStream.
The ReqestStream procedure generates a stream of expressions using the term dispatcher.

It first calls D .select to extract expressions that already satisfy the requests. For the undiscov-
ered expressions, it associates each request with a channel, i.e., a message-passing queue for
communication, and adds the request into the term dispatcher. During the search, the channel
will be asynchronously populated with newly discovered expressions that satisfy the constraints.
ReqestStream will forward all the expressions given by the channel as the output stream.

Meanwhile, the term generator (line 8-13) repeatedly enumerates new expressions in a bottom-up
order (denoted as NextTerm(G,S), with observational equivalence checking over S) and adds
them into D. At the time of adding an expression 𝑒 , the generator also looks up if 𝑒 satisfies any
pending request in D by calling D .dispatch(𝑒). All such requests will be responded to by adding
the newly enumerated 𝑒 into the associated channel r.chan.

6 Implementation
We have refined the synthesis approach detailed in the paper and implemented it in a synthesizer
called Synthphonia. The implementation of Synthphonia, written in Rust, comprises approxi-
mately 7 KLOC. Below, we describe several significant design choices and optimizations that were
employed during the development.

Intra-Thread Coordination of Enumeration and Deduction. Deductive rules, such as S-Prefix,
can initiate an extremely aggressive top-down search when a large number of expressions are
already stored in the term dispatcher. This extensive top-down search often results in excessive time
consumption without yielding significant progress and hinders the enumeration process within
the same thread. To achieve a balance between top-down deduction and bottom-up enumeration,
we introduce a technique called delayed deduction. This technique defers deeper deductive searches
to allow more time for enumeration. In our implementation, the deducer is permitted to proceed to
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the next depth level only after enumerating 100,000 expressions at the current depth. This approach
ensures a more efficient allocation of computational resources between deduction and enumeration.

Suppressing Excessive Threads. In Algorithm 1, aside from S-Ite which receives special treatment
as described in Section 5.1, L-Map and L-Filter can also generate too many subproblems with
distinct sets of examples, which lead to too many threads. In practice, these threads mostly search in
vain because L-Map and L-Filter are not frequently used. To this end, we add additional restriction
to Algorithm 1 to suppress the number of threads created by L-Map and L-Filter. First, we restrict
the depth these rules can be applied with in deduction. In our implementation, we only allow these
rules to be applied to subproblems with a depth up to 5. Also, we restrict the execution time of the
threads created by L-Map and L-Filter to 1 seconds.

Adaptive Size Limit. Because real-world problems vary, it is impossible to find a one-size-fits-all
𝜃tree-size for Algorithm 2. Therefore in default setting of Synthphonia, we allow 𝜃tree-size to linearly
increase when no new partial solutions are found within a time period. In our setting, 𝜃tree-size will
increase by 1 (allowing one more ITE) each 4 seconds without a new solution found. This adaptive
size limit makes Synthphonia more flexible for solving a wide spectrum of problems with various
difficulties.

7 Evaluation
In order to assess the efficiency of our concurrent synthesis approach, we performed comprehensive
experiments using Synthphonia and contrasted its performance against the latest string trans-
formation synthesizers available. All experiments were carried out on a Linux system equipped
with two Intel Xeon E5 10-core 2.2GHz CPUs and 128GB of RAM. We use nthd = 4 as the default
number of ACS workers.

7.1 Experimental Setup
Compared Synthesizers. We compare Synthphonia with existing, state-of-the-art synthesizers for
string transformation: CVC4/CVC5, Duet, Probe and FlashFill++: CVC4 [6] (and its successor
CVC5 [4]) is one of the most popular SMT solvers with the capabilities of SyGuS solving. We noticed
a significant difference between CVC4 and CVC5 and report the results from both. Probe [5] is a
SyGuS solver that performs a just-in-time bottom-up search with guidance from a probabilistic
model. Duet [26] is a tool for solving inductive SyGuS problems. It employs a bidirectional search
strategy with a domain specialization technique called top-down propagation which can recursively
decompose a given synthesis problem into multiple subproblems. It requires inverse semantics
operators that should be designed for each usable operator in the target language. FlashFill++ [9] is
designed to efficiently synthesize programs using large domain-specific languages (DSLs) containing
a large family of operators not expressible in the interchange format SyGuS-IF. It extends Duet’s
meet-in-the-middle synthesis algorithm with cuts, which allows DSL designers to further restrict
backward-propagation search space using the domain knowledge from the DSL. We use version
8.25.0 of FlashFill++ for our experiments.

CVC4/CVC5, Probe, and Duet are limited to grammars that can be expressed in the SyGuS-IF. In
contrast, FlashFill++ has developed a domain-specific grammar for strings that includes numerous
operators not supported by SyGuS-IF. Thus, when comparing Synthphonia to CVC4/CVC5, Probe,
and Duet, we restrict Synthphonia to utilize only the SyGuS-IF grammar (this version is denoted
as SP-G in the following sections). When comparing Synthphonia to FlashFill++, we set the
full grammar as presented in Figure 3 as the target grammar which utilizes a broader range of
operators such as negative indices, loops, date, time, and float operators.
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Benchmarks. We collect our string transformation benchmarks from 3 sources: i) Duet Benchmarks,
ii) Prose benchmarks, and iii) our own HardBench benchmarks. These 3 categories of benchmarks
entail a collection of 694 benchmarks.

• Duet. We grab 205 benchmarks from Duet [26], which consists of 108 from the SyGuS com-
petition and another 97 benchmarks from StackOverflow and ExcelJet. All Duet benchmarks
provide a grammar in SyGuS interchange format (SyGuS-IF) along with the input-output
examples.
• Prose. We utilize 354 benchmarks from the Microsoft PROSE team [34]. The challenge of

solving Prose benchmarks mainly lies in synthesizing transformations involving date, time,
and floating-point operations. Because of the limited operator support in the SyGuS-IF,
when comparing CVC4/CVC5, Probe, Duet, and Synthphonia (SP-G version), we adapt
the target language to the one used in the Duet benchmarks.
• HardBench. To further assess a synthesizer’s scalability and flexibility, we also crafted 135
challenging benchmarks, involving heavy case-splitting and loops. All these benchmarks
are based on real-world scenarios. One of the authors wrote English descriptions of the
tasks and produced sample input/output pairs with the aid of ChatGPT. Our Example 2.1
is from this category of benchmarks. We also present an additionally selected benchmark
in Appendix C.4.

Additional Testing Examples. Every benchmark comes with a set of original examples as an incom-
plete specification. To ensure that the produced solutions do not overfit to these examples, we also
manually crafted two to six additional testing examples for each benchmark. To successfully solve
a benchmark, the produced solution must pass all original and additional examples as test cases.

7.2 Comparison to Existing Synthesizers
We evaluate Synthphonia on all the benchmarks and compare it with CVC4/CVC5, Duet, Probe
and FlashFill++. For each instance, we run the benchmark and measure the running time with a
timeout of 1 minute. The experimental result can be Solved, Overfit, Timeout, or Error. Overall,
Synthphonia outperforms other solvers in terms of the number of solved problems and execution
time.

Synthphonia accurately solved 531 out of 694 benchmarks from three benchmark sets, outper-
forming all other synthesizers. Synthphonia also generated overfit solutions for 97 benchmarks.
Figure 5a shows the number of benchmarks that can be uniquely solved by each solver and for each
benchmark (Duet + HardBench + Prose). We do not include Probe in the chart because it did not
have any uniquely solved benchmarks in our setting. Among all the solvers listed, Synthphonia
stands out by uniquely solving 116 benchmarks. In comparison, FlashFill++ uniquely solved 29
benchmarks; CVC5 and Probe uniquely solved one each. These results showcased the effectiveness
of our methodology for string transformation programs.
Figure 5b illustrates the number of benchmarks successfully solved by each solver. We denote

Synthphonia as SP, FlashFill++ as FF++, and Synthphonia with SyGuS-IF Grammar as SP-G
in the figure. According to the figure, Synthphonia solved 531 benchmarks, surpassing all other
existing solvers. Even when employing identical grammar, SP-G outperformed Duet by solving 56
more benchmarks. However, because the grammar is not quite optimized on HardBench and Prose
benchmark, SP-G exhibited 216 overfits which made SP-G underperform FlashFill++. Figure 5c
shows the execution time versus the number of solved benchmarks. Regarding time efficiency,
Synthphonia demonstrates faster solution generation for hard problems compared to existing
methods.
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HardBench + Prose).
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solved and overfitted.

(c) Solution time

(Benchmarks in increasing order).

Fig. 5. Experimental results comparing to other solvers.

(a) Accumulative case-splitting. (b) Asynchronous deduction. (c) Scalability with multithreading.

Fig. 6. Ablation study.

7.3 Ablation Study
To evaluate the effectiveness of some novel features of our approach, we conducted an ablation
study of Synthphonia. This analysis aims to highlight their individual contributions to the
overall performance of the solver. To save space, we present only the aggregated results across all
benchmark categories; detailed results for each category are available in Appendix C.2. Throughout
this subsection, we denote the version of full Synthphonia with 𝑛 ACS workers as SP(𝑛).

Effectiveness of Accumulative Case-Splitting. We implemented a version of Synthphoniawithout
accumulative case-splitting, which we denoted as SP-NoACS(1). To avoid consuming too many
threads in this version, SP-NoACS(1) allows every deduction rule like S-Prefix to be conducted
on a subset of the examples S, which enables subproblems with a subset of the examples to be
deduced on the same thread. Figure 6a illustrates the performance difference between SP-NoACS(1)
and SP(1). Error and Timeout benchmarks are assigned a 1-minute execution time to be included
in the charts. As shown in the figure, SP(1) solved more benchmarks compared to SP-NoACS(1).
This demonstrates that accumulative case-splitting effectively accelerates the synthesis process
and enhances its capability of tackling more challenging benchmarks.

Effectiveness of Asynchronous Deduction. We also tested the performance of Synthphonia with-
out any assistance of asynchronous deduction. We implement a baseline version with only Eq rule



932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

111:20 Anon.

in Figure 4, but with accumulative case-splitting enabled. Figure 6b compares the performance
between Synthphonia with and without asynchronous deduction. Since our default setting is
nthd = 4, we denote this version as SP-NoDed(4). According to the figure, SP(4) solves more bench-
marks compared to SP-NoDed(4). However, SP(4) spends more time on solving those benchmarks
because we increase 𝜃tree-size after several seconds without a new partial solution found by any ACS
workers, which makes it harder to reach a higher 𝜃tree-size for faster workers, since faster workers
generate more frequent solutions.

Benefit of Multithreading. We next discuss the performance of our solver when scaled across
multiple threads. Figure 6c illustrates the time cost to solve these benchmarks when using different
numbers of threads. We also copy the comparable result of FlashFill++ in the figure for reference.
According to the figure, about 200 benchmarks can be solved faster using more threads. The
version with 16 threads: SP(16) can generate more solutions faster compared to other settings. This
showcases Synthphonia’s ability to scale across threads using accumulative case-splitting.

7.4 Room for Improvement
While the benchmarks Synthphonia failed to solve vary widely in the target tasks, a few common
reasons account for these failures. We now highlight a benchmark that Synthphonia is unable
to solve, showcasing certain limitations in our present implementation that future improvements
may address. Table 2 presents the input-output examples for the flight:airport1 benchmark
from HardBench, which Synthphonia cannot solve. Each input string of this benchmark contains
information about a flight, and the output should consist of the departure and arrival airport
codes in lowercase format, extracted from the input string. FlashFill++ successfully generates the
following solution:

def derived_column(x0):
index1 =[i for i in range(len(x0)) if x0.startswith("(", i)][1] -1
return (x0.split(" ")[1] +x0[x0.find(")") +1:index1]).lower()

Synthphonia could not solve this benchmark due to the following reasons:
(1) The arrival airport address should be represented by an expression like str.lowercase(

in0.split(“->”) [1].split(“␣”) [1]). However, Synthphonia does not offer enough sup-
port the operator “str.lowercase” . First, it lacks a deductive rule for “str.lowercase” (and
similarly for “str.uppercase” and several date/time operators). On top of that, Synth-
phonia assigns a low priority to this operator because it is not commonly used, which
ultimately causes Synthphonia to fail in generating the solution.

(2) Synthphonia lacks effective heuristics for selecting domain-specific constants (similar to
other SyGuS solvers like Duet). The current generic implementation generates an excessive
number of irrelevant constants for this problem, such as “:00 AM” , “:00 PM” , “M -> 0” , “:00
PM -> ” , and “:00 ” . This over-generation hampers performance.

8 Related Work
Parallelism for Program Synthesis. Various research has already explored the parallelization of

program synthesis algorithms. Morpheus [14] uses multiple threads to search for solutions of
different sizes, to maximize the possibility of reaching a large size. Adaptive concretization [22, 23]
and Synapse [7] present parallel synthesis algorithms which let each thread search for a non-
intersecting portion of the search space independently. However, these techniques only consider
parallel instances with an identical specification. Paresy [39] parallelizes an enumeration algorithm
for regular expression inference, without consideration of deduction. FlashMeta [33] attempts
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Table 2. Input/output examples for benchmark flight:airport1.

Input / String Output/ String
“CZ234; PEK (Beijing, China) -> SYD (Sydney, Australia); 10:00 PM -> 10:00 AM (+1 day)” “pek -> syd”

“LH789; MUC (Munich, Germany) -> JFK (New York, USA); 01:00 PM -> 05:00 PM” “muc -> jfk”
“UA789; IAH (Houston, USA) -> ORD (Chicago O’Hare, USA); 08:00 AM -> 11:00 AM” “iah -> ord”
“UA789; IAH (Houston, USA) -> ORD (Chicago O’Hare, USA); 08:00 AM -> 11:00 AM” “iah -> ord”
“EK456; JFK (New York, USA) -> DXB (Dubai, UAE); 06:00 PM -> 04:00 PM (+1 day)” “jfk -> dxb”
“DL567; ATL (Atlanta, USA) -> SFO (San Francisco, USA); 09:00 AM -> 11:00 AM” “atl -> sfo”

“QF234; SYD (Sydney, Australia) -> LAX (Los Angeles, USA); 09:00 AM -> 06:00 AM” “syd -> lax”
“LH789; MUC (Munich, Germany) -> JFK (New York, USA); 01:00 PM -> 05:00 PM” “muc -> jfk”
“AA789; JFK (New York, USA) -> LAX (Los Angeles, USA); 07:00 AM -> 10:00 AM” “jfk -> lax”

“SQ321; SIN (Singapore) -> JFK (New York, USA); 11:00 PM -> 07:00 AM (+1 day)” “sin -> jfk”
“DL567; ATL (Atlanta, USA) -> SFO (San Francisco, USA); 09:00 AM -> 11:00 AM” “atl -> sfo”

“AF567; CDG (Paris Charles de Gaulle, France) -> DXB (Dubai, UAE); 03:00 AM -> 11:00 AM” “cdg -> dxb”
“CZ345; PEK (Beijing, China) -> LHR (London Heathrow, UK); 11:00 PM -> 05:00 AM (+1 day)” “pek -> lhr”

....... (67 in total) .......

to parallelize their deduction but faces challenges due to the non-deterministic inverse semantics
of common operators, leading to an unnecessary combinatorial explosion in branch possibilities.
In contrast, Synthphonia offers a program synthesis architecture that harnesses concurrency to
orchestrate the decomposition, solving, and assembly of subtasks by both deduction and enumera-
tion.

Enumerative Methods for Synthesis. Enumerative program synthesis is widely acknowledged
for its efficacy. Here we only highlight those systems supporting string transformation synthesis.
Pioneered by EuSolver [2], various SyGuS synthesizers navigate expansive search spaces and
employ various strategies to efficiently prune those spaces. In bottom-up enumeration, a key
technique for pruning is observational equivalence (OE) [1, 38], which is also successfully applied
in Synthphonia. CVC4 [6, 32], as a consistent leader in the SyGuS competition, optimizes rewrite
rules to enhance equivalence checking during bottom-up approaches.
Recent research has also explored novel enumeration strategies using learning-based methods.

For example, Probe [5] leverages just-in-time learning with probabilistic context-free grammars
(PCFG), assigning scores to production rules based on learned contexts. Similarly, EuPhony [27]
incorporates probabilistic higher-order grammars (PHOG) to enrich the search guidance. The
concurrent interplay between enumeration and deduction presented in this paper is orthogonal to
the choice and enhancement of enumeration strategies.

Combining Deduction and Enumeration. As two major synthesis approaches, deduction and
enumeration complement each other, and combining their strengths to achieve the best performance
has been a popular direction in recent years. Though to the best of our knowledge, none of those
methods considered concurrent coordination between the enumerator and the deducer. Earlier
work guides the enumerative search via various kinds of deductions. 𝜆2 [15] uses deduction to
deduce the input-output examples for subproblems and conduct a best-first search on different
deductions. Similarly, Smyth [28] uses live bidirectional evaluation, which propagates examples
backward through user-given sketches. Feng et al. [13, 14] employ deduction to effectively limit the
search space during enumeration. However, for string transformation, many common operators
(ITE, concatenation, etc.) have nondeterministic inverse semantics and there are excessive branches
to explore. Above techniques help little in these cases.
Recent advancements also proposed “meet-in-the-middle” synthesis, which explores top-down

and bottom-up search simultaneously towards the middle, with a mixture of deductive and enumer-
ative methods. DryadSynth [12, 21] explores various ways to combine deductive and enumerative
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methods, including divide-and-conquer and bottom-up deduction (combining bottom-up enumera-
tion results on-the-fly). Duet [26] combines bottom-up enumeration with top-down propagation,
integrating expressions generated from bottom-up processes into a cohesive top-down framework.
Simba [40] and FlashFill++ [9] both provide methods to prune the search space during meet-
in-the-middle synthesis. Simba utilizes backward abstract interpretation to prune the top-down
propagation. FlashFill++ introduces cuts in the meet-in-the-middle synthesis system, enabling
DSL designers to reduce the witness function based on the DSL.

These existing approaches heavily influenced Synthphonia’s cooperation between the deducer
and the enumerator. However, in all these methods, the enumeration process is not tailored to react
to various specific decomposition needs, and the deducer has to repeatedly sift through a vast pool
of enumerated expressions. Compared to these meet-in-the-middle approaches, our concurrent
algorithm enables more general and flexible cooperation between the deducer and the enumerator,
which effectively accelerates the cooperation and offers more flexibility for deduction.

Synthesis with Conditions. Research on synthesizing conditional expressions encompasses various
approaches. Leon [2] introduces an abduction-based reasoning method that guesses conditions
based on existing partial solutions. EuSolver [2] formulates the combination of expressions and
conditions as a multi-label decision tree problem, using information-gain heuristics to construct
compact decision trees. Additionally, PolyGen [24] introduces synthesis through unification (STUN),
which unifies synthesized terms after generation, following Occam’s learning principles. These
methods significantly influenced the development of our accumulative case-splitting technique. As
previously stated, accumulative case-splitting offers greater adaptability as it conducts condition
search, term search, and the assembly of decision trees entirely concurrently and independently.

9 Conclusion and Future Work
We developed a synthesis algorithm that combines concurrent deductive and enumerative processes,
allowing multiple deduction paths to be explored in parallel, guided by enumeration. Our imple-
mentation, Synthphonia, designed for string transformation tasks, shows significant performance
improvements, successfully solving 116 benchmark tasks for the first time.
While this paper focuses on a special domain of string transformations, some key components

of our approach (the framework, the enumerator, and the accumulative case-splitting) are general
and have the potential to be applied to many other domains. To migrate Synthphonia to a new
domain, two components need to be re-designed carefully: asynchronous deduction rules and the
corresponding term dispatcher. Given a new domain, one needs to design a new set of domain-
specific, asynchronous deduction rules (similar to those in Figure 4), indicating how to decompose
a synthesis problem and which requests to send to the enumerator. Once the deduction rules and
requests are determined, on the enumerator side, one has to design corresponding data structures
to handle unique requests for the new domain (similar to what we discussed in §5.2).
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A Full List of Deduction Rules
Figure 7 presents extra asynchronous deductive rules not shown in Figure 4.

Eq
𝑒 |=𝐸 Eq[G, S]

𝑒 |= S

S-Len L-Len
𝑒 |=𝐸 Len[G, S]
len(𝑒 ) |= S

S-FromInt
𝑒𝑖 |= 𝐼 , 𝑒 |= 𝑆

str.from_int(𝑒𝑖 ) ++𝑒 |= S
str.from_int(𝐼 ) ++𝑆 = S

S-FromFloat
𝑒𝑖 |= 𝐼 , 𝑒 |= 𝑆

str.from_float(𝑒𝑖 ) ++𝑒 |= S
str.from_float(𝐼 ) ++𝑆 = S

S-ListAt(
𝑒 |=𝐸 Contains[G, S]

)
⋊
(
𝑒𝑖 |= J𝑒KI.indexof(S)

)
𝑒 [𝑒𝑖 ] |= S

S-Join(
𝑒 |=𝐸 ConstSubstr[G, S]

)
⋊
(
𝑒1 |= S.split(J𝑒𝑠KI )

)
list.join(𝑒1, 𝑒 ) |= S

S-Ite(
𝑒 |=𝐸 PartialEq[G, S]

)
⋊
(
𝑒1 |= J𝑒KI =B S, 𝑒2 |=

{
𝑖𝑖𝑖 ↦→ 𝑜 ∈ S

�� J𝑒K𝑖𝑖𝑖 ≠B 𝑜
})

ITE(𝑒1, 𝑒2, 𝑒 ) |= S

S-Prefix(
𝑒 |=𝐸 Prefix[G, S]

)
⋊
(
𝑒1 |= str.substr(S, str.len(J𝑒KI ), −1)

)
𝑒 ++𝑒1 |= S

S-ConstSubstr(
𝑒 |=𝐸 ConstSubstr[G, S]

)
⋊
(
𝑒1 |= S.split_once(J𝑒KI ) [0], 𝑒2 |= S.split_once(J𝑒KI ) [1]

)
𝑒1 ++𝑒 ++𝑒2 |= S

L-Map(
𝑒 |=𝐸 Len[G, len(S) ]

)
⋊
(
𝑒𝑓 |=

{
J𝑒K𝑖𝑖𝑖 [𝑘 ] ↦→ 𝑜 [𝑘 ]

��𝑖𝑖𝑖 ↦→ 𝑜 ∈ S, 0 ≤ 𝑘 < len(𝑆 [𝑖𝑖𝑖 ] )
})

list.map[𝑒𝑓 ] (𝑒 ) |= S

L-Filter (
𝑒 |=𝐸 Contains[G, S[0] ]

)
⋊( ∧

𝑖𝑖𝑖 ↦→𝑜∈S
𝑜.subseqof(J𝑒K𝑖𝑖𝑖 ), 𝑒𝑓 |=

{
J𝑒K𝑖𝑖𝑖 [𝑘 ] ↦→ 𝑜.contains(J𝑒K𝑖𝑖𝑖 [𝑘 ] )

��𝑖𝑖𝑖 ↦→ 𝑜 ∈ S, 0 ≤ 𝑘 < len(J𝑒K𝑖𝑖𝑖 )
} )

list.filter[𝑒𝑓 ] (𝑒 ) |= S

Fig. 7. Asynchronous Deduction Rules for String.

B Additional Algorithm Details
B.1 Subset Generation Method for Accumulative Case-splitting
In this section, we describe our method to generate subset mentioned in Algorithm 2. Here we
present the definition of GenerateExamples in Algorith 4. The subprocedure GenerateExamples
generates a minimum subset that is not covered by any existing solutions in sols. For example,
if the specification S consists of 6 input-output examples and sols has two solutions available:
sols = {𝑒1, 𝑒2}, and 𝑒1 covers examples 1, 2, 3, 4 and 𝑒2 covers example 3, 4, 5, 6, then example set 1, 5
is a minimum subset that can be generated by GenerateExamples. In contrast, example set 1, 2, 5
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is not minimum, and example set 1, 4 is already covered by expression 𝑒1; hence they will not be
generated. The subprocedure finds such a subset by performing a size-based enumeration, from
size 1 to size |S|. In the 𝑖-th iteration, it enumerates all subset of S with size 𝑖 in a random order.
Whenever a subset 𝑅 is not covered by any partial solution in sols, the subset will be returned for
synthesis.

fn GenerateExamples(S, sols) :
for 𝑖 ∈ [1, |S|] :

for random 𝑅 ⊆ dom(S), |𝑅 | = 𝑖 : // Iterate all 𝑖-combinations of dom(S) randomly

if
∧

sol∈sols

∨
(𝑖𝑖𝑖 ↦→𝑜 ) ∈S |𝑅

JsolK𝑖𝑖𝑖 ≠ 𝑜 : // Ensure not covered by existing partial solutions

return 𝑅

Algorithm 4: Subset Generation Method for Accumulative Case-splitting

B.2 Design of each Data Structures in the Term Dispatcher
We list the detail design of each data structures in Table 3.

B.3 Constant Selection
Synthphonia has the capability of inferring suitable string constants from current specification S.
We employ a set of heuristic rules to select constants based on their length and frequency within S.
For instance, in Example 2.1, the string “,␣” is short and frequently appears in the input-output
examples. Therefore, we consider “,␣” as a suitable constant and incorporate it directly into the
enumeration process. This strategic inclusion of suitable constants enhances the synthesizer’s
ability to effectively synthesize solutions that align closely with the provided examples.

C Additional Experimental Results
C.1 Results for Different Benchmarks
Here we present the specific result for each benchmark category.

Figure 8a illustrates the number of Duet benchmarks successfully solved by each solver. Synth-
phonia solved 188 benchmarks, surpassing all other existing solvers. Additionally, Synthphonia
exhibits only 16 overfits, which is lower than all competing solvers. Even when employing identical
grammar, Synthphonia-G outperforms Duet by solving 9 more benchmarks. Figure 8b shows the
execution time versus the number of solved benchmarks. Regarding time efficiency, both Synth-
phonia and Synthphonia-G demonstrate faster solution generation for hard problems compared
to existing methods.
Figure 9 presents the experimental results on Prose benchmarks, demonstrating comparable

results with FlashFill++ in terms of both the number of solved benchmarks and the solving time.
This showcases Synthphonia’s capability of synthesizing programs that involve date, time, and
floating-point numbers. In contrast, CVC4/CVC5, Probe, Duet, and Synthphonia-G fall short in
achieving comparable performance due to their lack of support for these operators.

Figure 10 depicts the superior performance of Synthphonia over existing methods onHardBench
benchmarks. Synthphonia can solve 136more benchmarks compared to FlashFill++. Furthermore,
Synthphonia requires less time to solve these problems compared to FlashFill++. This highlights
Synthphonia’s capability to tackle difficult problems using accumulative case-splitting and loops.
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Table 3. Data structures implementing term dispatcher for different types of requests.

Request Type Data Structure D .dispatch(𝑒) D .select(𝑟 )

Eq

A hash table 𝐻 that maps from a vector
of values to expressions/requests. All the
expressions and requests stored in𝐻 are
all indexed by the corresponding value
on each input.We also use the same table
for checking observational equivalence.

If 𝐻 [J𝑒KI ] is a re-
quest 𝑟 , returns {𝑟 },
otherwise, return ∅.

If 𝐻 [𝑟 .S] is an ex-
pression 𝑒 , returns
{𝑒}, otherwise, re-
turn ∅.

ConstSubstr

Pick a random input-output example
𝑖𝑖𝑖 ↦→ 𝑜 ∈ S, and maintain an interval
tree 𝑇 that maps any substring of 𝑜 to
expressions and requests. For each enu-
merated expression 𝑒 that is a substring
of𝑜 , wewill store an 𝑒 in the interval tree
for each appearance of J𝑒K𝑖𝑖𝑖 in 𝑜 , indexed
by the starting and ending index of that
appearance.Wewill store requests in the
interval tree in the same manner.

Look up all the super-
strings for J𝑒K𝑖𝑖𝑖 in 𝑇

and return the set of
all the requests that
holds on 𝑒 .

Look up all sub-
strings of 𝑟 .S in 𝑇

and return all the
expressions satisfy 𝑟 .

Prefix

We maintain maintain a radix tree 𝑅𝑖𝑖𝑖 for
each input example 𝑖𝑖𝑖 ∈ I. For each input
example 𝑖𝑖𝑖 , we store every enumerated
expression 𝑒 into the radix tree 𝑅𝑖𝑖𝑖 using
J𝑒K𝑖𝑖𝑖 as the prefix. And we store every
request 𝑟 into 𝑅𝑖𝑖𝑖 in the same manner.

1) Select 𝑖𝑖𝑖 that makes
J𝑒K𝑖𝑖𝑖 has longest
length. 2) Look up all
requests in 𝑅𝑖𝑖𝑖 that
use J𝑒K𝑖𝑖𝑖 as prefix.
3) Return all requests
in 2) that holds on 𝑒 .

1) Select 𝑖𝑖𝑖 that makes
𝑟 .S[𝑖𝑖𝑖] has shortest
length.
2) Look up all expres-
sions in 𝑅𝑖𝑖𝑖 that is a
prefix of 𝑟 .S[𝑖𝑖𝑖].
3) Return all expres-
sions in 2) that sat-
isfy 𝑟 .

Len

Similar to Eq, the enumerator maintain
a hash table 𝐻𝐿 that maps from a vector
of lengths to the corresponding expres-
sions/requests. Here we allow multiple
expressions and requests be associated
with the same vector of lengths.

Return all the
requests stored in
𝐻𝐿 [J𝑒KI ] .

Return all the ex-
pressions stored in
𝐻 [𝑟 .S].

Contains

Pick a random input-output example
𝑖𝑖𝑖 ↦→ 𝑜 ∈ S. A hash table 𝐻𝐶 that maps
from a string value to a list of requests.
𝐻𝐶 stores all the Contains requests 𝑟
from the deducer and index their value
𝑟𝑖𝑖𝑖 with respect to 𝑖𝑖𝑖 .

If J𝑒K𝑖𝑖𝑖 is a list, for
every element 𝑠 ∈
J𝑒K𝑖𝑖𝑖 , return all the re-
quests in 𝐻𝐶 [𝑠] that
holds on 𝑒 , otherwise,
return ∅.

Return ∅. (For effi-
ciency, we do not
keep track of the ex-
pression in term dis-
patcher for Contains
requests.)

Cond

A list 𝐸𝐶 to store all conditions discov-
ered by a single enumerator and a list
𝑅𝐶 to store all the request from the de-
ducers.

If J𝑒K𝑖𝑖𝑖 satisfies the
condition defined in
4.1, return 𝑅𝐶 .

return 𝐸𝐶 .

C.2 Ablation Study per Category of Benchmarks
Here we specify the ablation study result in Section 7.3 to different category of benchmarks. Figures
11, 12, 13 show the ablation study results for Duet, HardBench and Prose benchmark respectively.
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(a) Number of benchmarks solved and overfit. (b) Solution time (Benchmarks in increasing order).

Fig. 8. Experimental results on Duet benchmarks.

(a) Number of Benchmarks solved and overfit. (b) Solution time (Benchmarks in increasing order).

Fig. 9. Experimental results on Prose benchmark.

C.3 Additional Ablation Study for Implementation Details
Here we present the ablation study for the optimizations in Sec 6.

Effectiveness of Delayed Deduction. Fig 14a shows the performance of Synthphonia with and
without delayed deduction (mentioned in Section 6). From the figure, we can see with the help of
delayed deduction, more benchmark can be solved by Synthphonia.

Effectiveness of Adaptive size limit. Fig 14b shows Synthphonia with different 𝜃tree-size increase
rate. In the figure, we use SP(4)/𝑚s to denote SP(4) with 𝜃tree-size increase by 1 for every 𝑚

seconds without a new partial solution added into sols. According to the figure, limiting 𝜃tree-size
can effectively reduce the number of overfitting benchmarks.
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(a) Number of benchmarks solved and overfit. (b) Solution time (Benchmarks in increasing order).

Fig. 10. Experimental results on HardBench Benchmarks.

(a) Accumulative case-splitting. (b) Asynchronous deduction. (c) Scalability with multithreading.

Fig. 11. Ablation study for Duet Benchmarks.

(a) Accumulative case-splitting. (b) Asynchronous deduction. (c) Scalability with multithreading.

Fig. 12. Ablation study for HardBench Benchmarks.
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(a) Accumulative case-splitting. (b) Asynchronous deduction. (c) Scalability with multithreading.

Fig. 13. Ablation study for Prose Benchmarks.

(a) Ablation Study for Delayed Deduction. (b) Statistics for Different increase rate.

Fig. 14. Additional Ablation Study for Implementation Details.

C.4 Solution for A Selected Benchmark
In this section we present a concrete benchmark from HardBench: novel:year1. This benchmark
was created by one of the co-authors. They asked ChatGPT to list some information about famous
novels and create a problem to extract the year of that novel from the input. The input/output
examples of this benchmark is shown in Table 4.

It takes Synthphonia 22 seconds to solve this benchmark. It gives the solution:
(define-fun f ((arg0 String)) String

(ite (= (str.count arg0 (str.++ ")" ")")) 0)
(list.at (str.split (str.++ (list.at (str.split arg0 ")") 0) "(") "(") 1)
(ite (= (list.len (list.at (str.split arg0 ")") 1)) 0)

(str.++
(list.at (str.split arg0 "(") 1) "("
(list.at (str.split (list.at (str.split arg0 ")") 0) "(") -1) ")")

(str.++
(list.at (str.split arg0 (str.++ " " "(")) 1) " "
(list.at (str.split arg0 " ") 3) " "
(int.to.str 1) ")"
(list.at (str.split arg0 ")") 1)
")"))))
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Input / String Output/ String
“The Scarlet Letter (1850); Historical Fiction, Allegory” “1850”

“War and Peace (1869); Historical Fiction, Epic” “1869”
“The Scarlet Letter (1850) by Nathaniel Hawthorne; Historical Fiction, Allegory” “1850”

“One Hundred Years of Solitude; Magical Realism, Epic” “ ”
“The Catcher in the Rye; Coming-of-Age, Bildungsroman” “ ”

“Moby-Dick (1851); Adventure, Symbolic” “1851”
“Don Quixote (1605 (Part 1), 1615 (Part 2)); Satire, Adventure” “1605 (Part 1), 1615 (Part 2)”

“The Lord of the Rings; High Fantasy, Adventure” “ ”
“The Hobbit by J.R.R. Tolkien; Fantasy, Adventure” “ ”
“The Hobbit by J.R.R. Tolkien; Fantasy, Adventure” “ ”

“War and Peace; Historical Fiction, Epic” “ ”
“War and Peace (1869); Historical Fiction, Epic” “1869”

“Frankenstein (1818); Gothic Horror, Science Fiction” “1818”
“The Great Gatsby by F. Scott Fitzgerald; Modernist, Tragedy” “ ”

“War and Peace; Historical Fiction, Epic” “ ”
“Anna Karenina; Realist Fiction, Tragedy” “ ”

“To Kill a Mockingbird; Southern Gothic, Bildungsroman” “ ”
“The Great Gatsby (1925) by F. Scott Fitzgerald; Modernist, Tragedy” “1925”

....... (67 in total) .......
Table 4. Input/output examples for benchmark novel:year1
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