
JFass: A New Serverless Platform with

Customized JVM Runtime

ABSTRACT

Faas (Function as a service) is one form of serverless computing
where users only need to deploy function on the cloud and the
cloud service vendor will handle all the hardware resources the
function needs. The vendor will provide runtimes for these
functions which are driven by events. However, Faas is tailored
for short-lived functions which makes traditional runtime
optimizations such as JIT compilation fail to enhance
performance. We want to design a new framework to bridge the
gap between modern language runtime and serverless platforms.

In this paper, we aim at building a new serverless platform
tailored for JVM runtime with profile information sharing and
native code sharing across nodes. We also hope to use hardware
tracing technology to help reduce profiling overhead from
interpreter stage.

CCS CONCEPTS

• Software and its engineering -> Compiler • Software
performance

KEYWORDS

serverless computing, JVM, tracing

1 Introduction

Serverless Computing is gaining popularity for its low cost which
provides a “pay as you go” code execution platform. Faas
(Function-as-a-Service) is one form of serverless computing. Faas
abstracts away the complexity of resource management which
means programmers do not need to worry about deployment, but
only need to upload code to the Faas platform and the service
vendor will do everything else necessary such as underlying
resources provisioning, process management, etc. Programmers
divide an application into small isolated pieces of code and each
piece is called a function (or a logic unit), function will be
uploaded to the service provider which are triggered by events.
Faas make this possible by offering computing runtimes such as
JVM and functions run under isolation boundaries such as
containers. However, this simplification may lead to performance
slowdown when compared to traditional platforms. This arises
from the fact that high-level language runtimes will dynamically
collect profile information and generate optimized code for hot
blocks which are executed many times. Bad news is that Faas
functions are usually small units of code. To make it worse, Faas
functions are limited in how long each invocation is allowed to

run by the vendor and most profile information is discard after the
function is finished. [6]

As is known, Java can be considered both an interpreted and a
compiled language because Java source code will first be
translated to bytecodes and Java Virtual Machine (JVM) will
interpret them and then compile them into native code when JVM
figures out they are worth compiling from statistics collected
during runtime. Take HotSpot for example, there are some types
of counters such as invocation counters, back-edge counters to
describe the runtime information of a method. They can start from
the interpreter stage. HotSpot kicks off two different Just In Time
(JIT) compilers, the client (known as C1) and the server (known
as C2) to get faster, efficient machine code. The C1 compiler has a
low compilation pre-defined threshold to reduce startup time and
C2 compiler has a higher threshold and can generate more
optimized native code to enhance performance by adapting more
aggressive compiling methods to those may be in the critical
execution path of the program based on the profile information
collected during runtime. By doing so, Java can get better
performance as native code runs faster than interpreting. But this
is based on the assumption that the compiled part will continue
executing many times and the saved time can compensate for the
compilation phase and interpreter phase because the overhead
introduced by compilation cannot be ignored. The framework of
Faas may contradict to this assumption because most functions on
Faas are short-lived and most critical blocks are not executed on
optimized code or the compilation overhead is bigger than its
income. This arises from the fact that profile information is
distributed on different nodes which will make it hard to exceed
the pre-defined threshold on a single node or cause repeated
compilation on every node. [4]

Intel Processor Tracing (PT) is a new feature that will expose
an accurate and detailed trace of activities of Intel Processor. It
mainly traces the execution of branch instructions by recording
them in the data packets, then these packets will be stored in the
disk. PT has been used in various areas such as testing,
performance analysis and debugging. We can use PT or other
hardware tracing technologies to assist profiling collecting in
JVM runtime to slowdown overhead by transforming the
overhead to offline.[5]

Based on the facts above, we plan to build a new serverless
platform tailored for JVM runtime with profile information
sharing and native code sharing across nodes assisted by hardware
tracing technology.

2 Related work

Mohammad first characterized the entire production Faas
workload of Azure Functions and they found that vast majority of
functions have a maximum execution time of 10 seconds and vast
majority of applications are invoked infrequently. This implies
that Faas are tailored for small functions and traditional server-
based runtimes may not be suitable for directly being deployed to
Faas. [1]

Joao shows modern serverless platforms do not fully leverage
runtime optimizations and a significant number of function
invocations running on warm containers are executed with
unoptimized code. They said they were implementing a new
serverless platform with profiles sharing and code across nodes
sharing and the work is still under implementation today. Inspired
by the workshop they published on HotOS’21, I plan to extend
their work and design a new serverless platform tailored for JVM
runtimes. [2]

Zhiqiang presents JPortal, a JVM-based profiling tool that bridge
the gap between high-level language applications and low-level
hardware traces. By precisely designing algorithms, JPortal can
recover the program’s control flow graph from the PT traces
recorded during runtime. Based on their work, I can design new
profiling pattern assisted by PT. [3]

3 Challenges

● Portability

HotSpot will generate machine code by inserting a lot of
runtime information directly to the instruction which will
make it difficult to reuse the code on other machines. To
make it worse, C1 and C2 will conduct different
optimization-level strategies which make portability harder.
No previous work has ever tried to solve this, so it is worth
time designing some new algorithms for code portability
because compilation compose an overhead which cannot be
ignored during execution.

● Deoptimization

To make the machine code smaller and faster, HotSpot will
use some very aggressive optimization strategies. For
example, for a branch instruction, the compiler will directly
assume that fewer taken one will not be executed next time
and discard it. So how to properly add logic for native code
to return back to interpreter is a little difficult.

● Profiles Integration

Different stage will outcome different form of profiles. In
HotSpot, there are three stages for each function:
interpretation, native code generated by C1 compiler and
native code generated by C2 compiler. How to integrate
profile information produced by different stage is still under
consideration.

● Code-transmission Overhead

Though native code runs faster than interpreter, transmission
overhead cannot be ignored because it is likely that
compilation is faster than waiting for the code to come. To
make it worse, traditional network stack will waste a lot of
time repeating copying. Some new technology may assist
reducing the overhead such as RDMA.

● Security

Sharing profiles and code may impose a threat for attack. For
example, attacker can conclude some runtime information
from the native code and can make the entire platform crash.
This means there must exist a limitation for the range of
profile and code sharing.

● Asynchronous Operation

Sharing code and profiles during runtime asynchronously can
add a lot difficulties to the framework design and make it
hard to maintain.

4 Overview

Figure 1 shows the components of the new framework. There are
two types of nodes, master node and normal nodes. Master node is
responsible for integrating profile information from other nodes
and generating native codes and handing out them. When an event
arrives, a new normal node will be called to handle this event.
Every time a normal node finishes, it will send profile information
back to the master node. The master node will integrate profile
information of different stages and generate native code when it
finds some code blocks are ‘hot’ which means it is on the critical
path of a program. Once the master generates native code, it will
send it to normal nodes.

5 Discussion

Here I list some threats that may lead to failure of my research.

● Hardware-Tracing Assistance

Hardware tracing technology is not mature nowadays and it is
not as precise and accurate as software tracing such as
instrumentation or other tools. To make it worse, decoding the
packets generated by hardware costs a lot of time which will
make it hard to generate code in time.

● Transmission Overhead

If Transmission overhead is larger than compilation locally,
the work will make no sense since just follow the traditional
pattern will gain much income.

6 Conclusion

In this paper, we draw up a new serverless platform tailored for
JVM runtime with profile information sharing and native code
sharing across nodes to bridge the performance gap by co-design
between modern language runtime and serverless platform. We
also hope to use hardware tracing technology to help reduce
profiling overhead from interpreter stage.

REFERENCES

[1] Shahrad, Mohammad, et al. "Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud provider." 2020 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 20). 2020.

[2] Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. 2021. From
warm to hot starts: leveraging runtimes for the serverless era. In <i>Proceedings of
the Workshop on Hot Topics in Operating Systems</i> (<i>HotOS '21</i>).
Association for Computing Machinery, New York, NY, USA, 58–64. DOI:https://
doi.org/10.1145/3458336.3465305

[3]Zhiqiang Zuo, Kai Ji, Yifei Wang, Wei Tao, Linzhang Wang, Xuandong Li, and
Guoqing Harry Xu. 2021. JPortal: precise and efficient control-flow tracing for JVM
programs with Intel processor trace. In <i>Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation</i>
(<i>PLDI 2021</i>). Association for Computing Machinery, New York, NY, USA,
1080–1094. DOI:https://doi.org/10.1145/3453483.3454096

[4] OpenJDK. Compiler. https://wiki.openjdk.java.net/display/HotSpot/Compiler

[5] Intel. Processor Tracing. https://software.intel.com/content/www/us/en/develop/
blogs/processor-tracing.html

[6] IBM. FaaS (Function-as-a-Service). https://www.ibm.com/cloud/learn/faas

https://wiki.openjdk.java.net/display/HotSpot/Compiler

