
Relocation in JIT

Yuantian Ding

Relocation for Hotspot JVM Jitted Code

3 Category of Relocation Address

• Object Pointer (oop_type)

• Object allocated in GC; May be changed during the runtime.

• Metadata Pointer (metadata_type)

• Class and Method data including profile data, bytecodes, and constants.

• Dynamically loaded by java.lang.ClassLoader

• Address inside the JVM Runtime (static_call, virtual_call, runtime_call, external_word)

• Stub Routines (aka Runtime specific subroutines) e.g. arraycopy, sin(float)

• Internal Tables

• String Message

Object Pointers
Constants

• Most object pointers used in jitted code are constants (aka static final
variable).

• For example:
private static final Unsafe UNSAFE = Unsafe.getUnsafe();

• java.lang.String Constants are also static final.

• Array Elements in a static final field are also considered static final.

• java.lang.Class Instances are also considered static final.

Object Pointers
Trusted non-static fields

• Trusted non-static final fields could also be used as object pointers in
jitted code. Currently, we just disable this feature.

• Trusted non-static final fields are mostly variables that will be set at the
start of the program (the boot layer), and remain constant during user’s
code.

• Trusted non-static final fields are defined in the following function.
 bool trust_final_non_static_fields(ciInstanceKlass* holder)

Object Pointers
Pre-defined Exceptions

• There are a series of exceptions used in jitted code.
 ciInstance* NullPointerException_instance();
 ciInstance* ArithmeticException_instance();

 /// Lazy constructors:
 ciInstance* ArrayIndexOutOfBoundsException_instance();
 ciInstance* ArrayStoreException_instance();
 ciInstance* ClassCastException_instance();

 ciInstance* the_null_string();
 ciInstance* the_min_jint_string();

Object Pointers
Current State

• I have fully viewed related c1 compiler’s code. And I’m sure that all
possible object pointers are correctly handled.

• However, reading C2 compiler’s code is not an easy task (It use DFA and
code generation). We may checking all possibility of object pointers in the
future.

Metadata Pointer
Metadata

• What is a Metadata? There are 5 classes that inherit from Metadata:

• Klass: Inner representation of a java Class data. (Constants, Fields, Methods)

• ConstantPool: Constants in a specific class defined in Bytecode.

• Method: Inner representation of a method data. (Name & Signature, Profile
information, Code entry, etc)

• MethodCounters: invocation counter & backedge counter in a method. Mainly
used in interpreter state (compile level 0) and limit profile collection state
(compile level 2).

• MethodData: All profile information in a method. Including counters, branch
counters, virtual call types. Mainly used in full profile state (compile level 3).

Metadata Pointer
Metadata and Classloader

• Metadata (Klass/Method/ConstantPool) need to be load from an instance
of java.lang.Classloader, which is dynamically defined during the runtime.

• Currently we just skip loading the relocated jitted code if current
java.lang.Classloader can’t find a class.

• Note: Class-loading during compilation is disabled by JVM, and I enable
that feature. Is that a good practice?

Metadata Pointer
MethodCounters & MethodData

• MethodCounters:

• Limited profile information will be record in MethodCounters struct. However, JVM
does not provide reloc information for MethodCounters.

• Most MethodCounters pointers are embedded as a Constant in C1 LIR (LIR_Const).
Other possibilities should be checked in the future.

• MethodData:

• Unlike MethodCounters, JVM provides reloc information for MethodData and its
relocation is easy to implement.

• Merge Operation that merge 2 existing MethodData is harder to implement, as you
need to understand every profile entries in MethodData.

Address in JVM Runtime

• JIT compiler always embed a number of inner addresses into jitted code, which
is a huge problem for us. These addresses include:

• Runtime Stub: subroutine for specific Runtime (Allocation subroutine,
Exception handler, etc.)

• Inner function: call inner c++ function directly. Such as:
void MacroAssembler:::debug64(char* msg, int64_t pc, int64_t regs[]);
jlong os:::javaTimeNanos();
jlong ldiv(jlong y, jlong x);

• String Messages

• ……………….

Address in JVM Runtime
Current State

• Only frequently-used addresses is considered in current implementation.

• It can cover most cases in our benchmarks.

